skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Holden"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Meka, Raghu (Ed.)
    We initiate the study of approximately counting the number of list packings of a graph. The analogous problem for usual vertex coloring and list coloring has attracted substantial attention. For list packing the setup is similar, but we seek a full decomposition of the lists of colors into pairwise-disjoint proper list colorings. The existence of a list packing implies the existence of a list coloring, but the converse is false. Recent works on list packing have focused on existence or extremal results of on the number of list packings, but here we turn to the algorithmic aspects of counting and sampling. In graphs of maximum degree Δ and when the number of colors is at least Ω(Δ²), we give a fully polynomial-time randomized approximation scheme (FPRAS) based on rapid mixing of a natural Markov chain (the Glauber dynamics) which we analyze with the path coupling technique. Some motivation for our work is the investigation of an atypical spin system, one where the number of spins for each vertex is much larger than the graph degree. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Recently, researchers have found that representations learned by large-scale pretrained language models are useful in various downstream tasks. However, there is little theoretical understanding of how pre-training performance is related to downstream task performance. In this paper, we analyze how this performance transfer depends on the properties of the downstream task and the structure of the representations. We consider a log-linear model where a word can be predicted from its context through a network having softmax as its last layer. We show that even if the downstream task is highly structured and depends on a simple function of the hidden representation, there are still cases when a low pre-training loss cannot guarantee good performance on the downstream task. On the other hand, we propose and empirically validate the existence of an “anchor vector” in the representation space, and show that this assumption, together with properties of the downstream task, guarantees performance transfer. 
    more » « less
  3. Noise Contrastive Estimation (NCE) is a popular approach for learning probability density functions parameterized up to a constant of proportionality. The main idea is to design a classification problem for distinguishing training data from samples from an easy-to-sample noise distribution q, in a manner that avoids having to calculate a partition function. It is well-known that the choice of q can severely impact the computational and statistical efficiency of NCE. In practice, a common choice for q is a Gaussian which matches the mean and covariance of the data. In this paper, we show that such a choice can result in an exponentially bad (in the ambient dimension) conditioning of the Hessian of the loss, even for very simple data distributions. As a consequence, both the statistical and algorithmic complexity for such a choice of q will be problematic in practice, suggesting that more complex and tailored noise distributions are essential to the success of NCE. 
    more » « less